Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.

Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores

Indexado en
  • Índice Copérnico
  • Google Académico
  • Abrir puerta J
  • Revista GenámicaBuscar
  • InvestigaciónBiblia
  • Biblioteca de revistas electrónicas
  • Búsqueda de referencia
  • Universidad Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • Catálogo en línea SWB
  • Biblioteca Virtual de Biología (vifabio)
  • publones
  • Fundación de Ginebra para la educación y la investigación médicas
  • ICMJE
Comparte esta página

Abstracto

A Preliminary Study on Multivariate Prediction of Seizure Outcome after Epilepsy Surgery

Jing Zhang, Hui Chen, Weifang Liu, Qingzhu Liu, Shanshan Mei and Yunlin Li

Surgical outcomes of epilepsy surgery vary across patients, and clinicians need to estimate possible outcomes before surgery. The aim of this study was to identify predictors of seizure outcome one year after surgery for patients with drug-resistant epilepsy. Twenty-three patients with Temporal Lobe Epilepsy (TLE) who underwent surgery were included in the study. Their demographical information, seizure history, findings of EEG and neuroimaging tests (mainly Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS), intracranial EEG (icEEG) findings, seizure outcome and pathological findings were reviewed. Bivariate analyses were performed to examine the univariate association of each variable with the outcome, and exclude the most insignificant ones. The remaining data were randomly assigned to the training and test sets, and three multivariate analysis approaches (Logistic Regression (LR), Linear Discriminant Analysis (LDA) and Artificial Neural Network (ANN)) were performed repetitively. Model performance was compared using Receiver-Operating Characteristic (ROC) analysis. Resampling the data to the training and test sets resulted in large variations in the classification accuracies of each multivariate approach. The ROC results indicated that the medium classification performances were moderate. Important outcome predictors identified included EEG lateralization score, icEEG lateralization score, and the presence of Hippocampal Sclerosis (HS). The results suggested that multivariate models could predict seizure outcome after TLE surgery with moderate accuracy. Further studies are needed to improve prediction accuracy and identify reliable predictors of seizure outcome.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.