ISSN: 2332-0877

Revista de terapia y enfermedades infecciosas

Acceso abierto

Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.

Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores

Abstracto

Advanced Medical Image Recognition and Diagnosis of Respiratory System Viruses

Mazhar B Tayel, Adel El Fahaar, AM Fahmy

Respiratory infections are a confusing and time-consuming task of constantly looking at clinical pictures of patients. Therefore, there is a need to develop and improve the respiratory case prediction model as soon as possible to control the spread of disease. Deep learning makes it possible to discover a virus such as COVID-19 can be effectively detected using classification tools as CNN (Convolutional Neural Network). MFCC (Mel Frequency Cepstral Coefficients) is a common and effective classification tool. MFCC-CNN’s the proposed learning model is used to speed up the prediction process that assists medical professionals. MFCC is used to extract image features that are related to presence of COVID-19 or not. Prediction is based on convolutional neural network. This makes time-consuming process easier, faster with more accurate results reducing the spread of the virus and saves lives. Experimental results show that using a CT image converted to Mel-frequency cepstral spectrogram as an input to CNN can perform better results; with the validation data that include 99.08% accuracy for appropriate COVID categories and images with the non-COVID labels. Thus, it can probably be used to detect in CT images the presence of COVID-19. The work here provides evidence of the idea that high accuracy can be achieved with a trusted dataset, which can have a significant impact on this area.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.