Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.
Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores
Jacobson JI
This paper essentially poses the question, “Is it possible to calculate target-specific magnetic resonance energies to restore bio molecular order and inhibit telomerase production under conditions of increasing entropy, even as cells pass M2 checkpoints?” Indeed, a diversity of positive experimental outcomes has pointed to the possibility that non-ionizing radiation (NIR’s) produce positive bio effects of predictable nature. The hypothetical construct is that Pico-Tesla range magnetic fields are physiologic and may possibly affect molecules and molecular assemblies through the piezoelectric effect; most especially due to the supposed quasi-crystalline semi conductive nature of various biological structures. The initial physical mechanism is hypothesized to be photon-phonon transductions, i.e., electro mechanical conversions, via resonance phenomena. Utilizing a novel particle-wave equation, mc2=BvLq, specified magnetic flux densities have been calculated, formulating a possible system of dual resonance. The energy produced by the interaction of the organism and the magnetic field is set equal to the intrinsic energy of a molecule. The outcome of this methodology may possibly provide a new, noninvasive holistic paradigm for adjuvant treatment of cancer. In support of said hypothesis, various experimental outcomes are considered, wherein the given method was utilized to establish magnetic resonance protocols, based on molecular species known to be associated with pathophysiologic conditions including cancer. Thus, if successful, then a possible new adjunctive, non-invasive and non-significant risk approach for telomerase inhibition with conventional cancer therapy is proposed.