ISSN: 2155-9872

Revista de técnicas analíticas y bioanalíticas

Acceso abierto

Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.

Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores

Indexado en
  • Índice de fuentes CAS (CASSI)
  • Índice Copérnico
  • Google Académico
  • sherpa romeo
  • Base de datos de revistas académicas
  • Abrir puerta J
  • Revista GenámicaBuscar
  • TOC de revistas
  • InvestigaciónBiblia
  • Infraestructura Nacional del Conocimiento de China (CNKI)
  • Directorio de publicaciones periódicas de Ulrich
  • Biblioteca de revistas electrónicas
  • Búsqueda de referencia
  • Directorio de indexación de revistas de investigación (DRJI)
  • Universidad Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • director académico
  • Catálogo en línea SWB
  • Biblioteca Virtual de Biología (vifabio)
  • publones
  • Pub Europeo
  • ICMJE
Comparte esta página

Abstracto

Analyzing the Methods to Remove Artifacts Encountered in the Development of a NIR Quantitative Model for Powder Medicines

Zhen Ni, Yan-Chun Feng and Chang-Qin Hu

The wrapper composition, particle size and crystallinity of powder drugs all affect their NIR spectra. To remove these effects, one must apply proper spectral preprocessing methods and good algorithms before developing a NIR quantitative model. Though different spectral preprocessing methods possess different functions aimed at removing different effects, we have found that use of the first derivative+vector normalization (FD+VN) removes the effects of packaging bottle and particle size in the NIR spectra. The effect of crystallinity cannot be removed with spectral preprocessing methods, but it can be reduced by choosing a proper calibration set, choosing a specific principal component, and applying partial least squares fitting.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.