ISSN: 2157-7617

Revista de Ciencias de la Tierra y Cambio Climático

Acceso abierto

Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.

Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores

Indexado en
  • Índice de fuentes CAS (CASSI)
  • Índice Copérnico
  • Google Académico
  • sherpa romeo
  • Acceso en Línea a la Investigación en Medio Ambiente (OARE)
  • Abrir puerta J
  • Revista GenámicaBuscar
  • TOC de revistas
  • Directorio de publicaciones periódicas de Ulrich
  • Acceso a la Investigación Global en Línea en Agricultura (AGORA)
  • Centro Internacional de Agricultura y Biociencias (CABI)
  • Búsqueda de referencia
  • Universidad Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • Invocaciones de proquest
  • Catálogo en línea SWB
  • publones
  • Pub Europeo
  • ICMJE
Comparte esta página

Abstracto

Application of Artificial Neural Network for Groundwater Level Simulation in Amritsar and Gurdaspur Districts of Punjab, India

Lohani AK and Krishan G

In this paper, the most stable and efficient neural network configuration for predicting groundwater level in Amritsar and Gurdaspur districts of Punjab, India is identified. For predicting the model efficiency and accuracy, different types of network architectures and training algorithms are investigated and compared. It has been found that accurate predictions can be achieved with a standard feed forward neural network trained with the Levenberg–Marquardt algorithm providing the best results. Good estimation of groundwater level can be achieved by dividing the boreholes/observation wells into different groups of data and designing distinct networks which is validated by the ANN technique and the degree of accuracy of the ANN model in groundwater level forecasting is within acceptable limits. The ANN method has been found to forecast groundwater level in Amritsar and Gurdaspur districts of Punjab, India.