Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.

Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores

Indexado en
  • Índice de fuentes CAS (CASSI)
  • Índice Copérnico
  • Google Académico
  • sherpa romeo
  • Acceso en Línea a la Investigación en Medio Ambiente (OARE)
  • Abrir puerta J
  • Revista GenámicaBuscar
  • Directorio de publicaciones periódicas de Ulrich
  • Acceso a la Investigación Global en Línea en Agricultura (AGORA)
  • Biblioteca de revistas electrónicas
  • Búsqueda de referencia
  • Universidad Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • Catálogo en línea SWB
  • Biblioteca Virtual de Biología (vifabio)
  • publones
  • Fundación de Ginebra para la educación y la investigación médicas
  • Pub Europeo
Comparte esta página

Abstracto

Assessment of Levee Erosion Using Image Processing and Contextual Cueing

Mehdi Khazaeli, Leili Javadpour, Hector Estrada and Ali Takbiri-Borujeni

Soil erosion is one of the most severe land degradation problems afflicting many parts of the world where topography of the land is relatively steep. Due to inaccessibility to steep terrain, such as slopes in levees and forested mountains, advanced data processing techniques can be used to identify and assess high risk erosion zones. Unlike existing methods that require human observations, which can be expensive and error-prone, the proposed approach uses a fully automated algorithm to indicate when an area is at risk of erosion; this is accomplished by processing Landsat and aerial images taken using drones. In this paper the image processing algorithm is presented, which can be used to identify the scene of an image by classifying it in one of six categories: levee, mountain, forest, degraded forest, cropland, grassland or orchard. This paper focuses on automatic scene detection using global features with local representations to show the gradient structure of an image. The output of this work counts as a contextual cueing and can be used in erosion assessment, which can be used to predict erosion risks in levees. We also discuss the environmental implications of deferred erosion control in levees.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.