ISSN: 2168-9717

Tecnología de ingeniería arquitectónica

Acceso abierto

Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.

Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores

Indexado en
  • Índice Copérnico
  • Google Académico
  • sherpa romeo
  • Abrir puerta J
  • Revista GenámicaBuscar
  • Claves Académicas
  • Biblioteca de revistas electrónicas
  • Búsqueda de referencia
  • Universidad Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • Catálogo en línea SWB
  • Biblioteca Virtual de Biología (vifabio)
  • publones
  • Pub Europeo
Comparte esta página

Abstracto

Automatic Segmentation of Lidar Data

Abdelmounaim Bellakaout*, Cherkaoui Omari Mohammed, Ettarid Mohamed, Touzani Abderrahmane

Topographical technology by Airborne LIDAR (Light Detection and Ranging) generates a precise points cloud with a density of several points per square meter, LIDAR data processing is a crucial step to be used. Extraction of 3D information in automatic way and especially in urban areas from LIDAR data is one of the most difficult problems in computer vision; it is also a necessary step for implementation of several applications that require a high level interpretation of LASER data. Therefore, there is recently an increased interest in this research field and a vast literature. The problematic discussed in this article lies in the differentiation between the sets of points that represent a specified layer of information (construction, vegetation, roads, lines, etc.). This step is called segmentation. The aim of this study is to provide a set of automatic segmentation techniques tailored to different types of 3D data and proposes a methodology to classify LIDAR data with a maximum degree of automaticity using only point cloud data.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.