Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.
Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores
Alice Peterson
Plastic usage has skyrocketed in today’s fast-paced, convenience-driven economy. This has unintentionally resulted in a massive pile of plastic garbage harming the environment. Unfortunately, current methods of plastic waste management, such as recycling, dumping, and incineration, have all been shown to be inadequate. Recent breakthroughs in biodegradable polymers and microbial engineering strategies for more expeditious breakdown of plastic waste at composting facilities have resulted in a convergence on plastic waste management. This review study incorporates recent discoveries in the fields of biodegradable polymers and microbiological strategies for polymer waste management. Biodegradable polymer advancements have proven promising, particularly with aliphatic polyesters and starch in blends or co-polymers. Microbial techniques have been developed in order to identify microbial strains and comprehend their enzymatic breakdown process on polymers. New discoveries in these two areas have focused on increasing the rate of plastic waste decomposition in composting facilities. The most recent alignment of testing and certification standards is described in detail to provide detailed insights into the mechanisms and causes driving biodegradation. Despite recent advances, the economic sustainability of composting plastic waste in conventional waste facilities remains a long way off. As it stands, biodegradable polymers are functionally inferior to conventional polymers. Rather, it will need a shift in consumer behaviour to accept less durable biodegradable plastic items, which will decrease the barrier to commercialization of biodegradable polymers.