Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.

Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores

Abstracto

Classification of Breast Ultrasound Images Using A Fuzzy-Rank Ensemble Network

Yikun Liu

Breast cancer is a prevalent and potentially life-threatening disease affecting women globally. Early and accurate detection of breast lesions through medical imaging, such as ultrasound, is crucial for effective treatment. In this study, we propose a novel approach for the classification of breast ultrasound images using a fuzzy-rank ensemble network. The proposed ensemble network combines the strengths of fuzzy logic and rank-based techniques to enhance the robustness and accuracy of classification. The network leverages fuzzy membership functions to capture the uncertainty inherent in ultrasound image interpretation, while the rank-based ensemble method aggregates predictions from multiple classifiers to improve overall performance. Experimental results on a comprehensive dataset demonstrate that the proposed fuzzy-rank ensemble network achieves superior classification performance compared to individual classifiers and traditional ensemble methods. This approach holds promise for improving the diagnostic capabilities of breast ultrasound image analysis, ultimately aiding clinicians in making more informed decisions and potentially contributing to enhanced patient outcomes.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.