ISSN: 2168-9652

Bioquímica y fisiología: acceso abierto

Acceso abierto

Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.

Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores

Indexado en
  • Índice de fuentes CAS (CASSI)
  • Índice Copérnico
  • Google Académico
  • sherpa romeo
  • Abrir puerta J
  • Revista GenámicaBuscar
  • Claves Académicas
  • TOC de revistas
  • Directorio de publicaciones periódicas de Ulrich
  • Biblioteca de revistas electrónicas
  • Búsqueda de referencia
  • Universidad Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • director académico
  • Catálogo en línea SWB
  • Biblioteca Virtual de Biología (vifabio)
  • publones
  • Pub Europeo
  • ICMJE
Comparte esta página

Abstracto

Common Pitfalls and Novel Opportunities for Predicting Variant Pathogenicity

Tom van den Bergh, Bas Vroling, Remko KP Kuipers, Henk-Jan Joosten and Gert Vriend

The prediction of missense variant pathogenicity is normally performed using analyses of multiple sequence alignments optionally augmented with analyses of the (predicted) protein structure. The most straightforward way, though, is to search the literature to see whether this variant has already been described. Variant data from homologous proteins are also valuable because mutations in a homologous protein often have similar effects as mutations at the equivalent residues of the protein of interest. Transferring variant data seems trivial but is seriously hampered by the fact that homologous residue positions have different numbers in different species. This problem is even bigger when to proteins have such low sequence identities that they can no longer be aligned based on their sequences only and their structures need to be compared to align them accurately. The protein superfamily analysis software suite 3DM solves these problems, because 3DM is a system that combines high quality structure based multiple sequence alignments in which aligned residues have the same number, with all published mutant and variant data for human and all other species. We have used 3DM to analyze nine human proteins for which many disease-related variants are known. This study reveals that mutation data can be transferred even between very distant homologous proteins. Thus, protein superfamily information systems, such as 3DM, offer a wealth of unused information that can be used in the analysis of human variants.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.