ISSN: 2157-7617

Revista de Ciencias de la Tierra y Cambio Climático

Acceso abierto

Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.

Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores

Indexado en
  • Índice de fuentes CAS (CASSI)
  • Índice Copérnico
  • Google Académico
  • sherpa romeo
  • Acceso en Línea a la Investigación en Medio Ambiente (OARE)
  • Abrir puerta J
  • Revista GenámicaBuscar
  • TOC de revistas
  • Directorio de publicaciones periódicas de Ulrich
  • Acceso a la Investigación Global en Línea en Agricultura (AGORA)
  • Centro Internacional de Agricultura y Biociencias (CABI)
  • Búsqueda de referencia
  • Universidad Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • Invocaciones de proquest
  • Catálogo en línea SWB
  • publones
  • Pub Europeo
  • ICMJE
Comparte esta página

Abstracto

Comparison of MLP-ANN Scheme and SDSM as Tools for Providing Downscaled Precipitation for Impact Studies at Daily Time Scale

Hashmi MZ, Shamseldin AY and Melville BW

Statistical downscaling has become an important part in most of the watershed scale climate change investigations. It is usually performed using multiple regression-based models. Basic working principle of such models is to develop a suitable relationship between the large scale (predictors) and the local climatic parameters called predictands. The development of such relationships using linear regression becomes very challenging when the local parameter to be downscaled is complex in nature such as precipitation. For this reason, use of nonlinear data driven techniques including Artificial Neural Networks (ANNs) is becoming more and more popular. Therefore, an attempt has been made in the study presented here to introduce a new Multi-Layer Perceptron (MLP) ANN-based scheme to develop a robust predictors-predictand relationship to be used as a downscaling model at daily time scale. The efficiency of this model has been compared with a popularly used model called Statistical Down Scaling Model (SDSM), for daily precipitation at the Clutha watershed in New Zealand. The results show that the model developed based on ANN scheme exhibits better performance than the SDSM. Hence, it is concluded that the use of artificial intelligence techniques such as ANN can greatly help in developing more efficient predictor-predictand models for even for precipitation being the toughest climate variable to model

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.