Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.

Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores

Abstracto

Deep Learning-Based Medical Data Association Rules Method Analysis of Characteristic Factors of Nursing Safety Incidents in ENT Surgery

Asit Arora

Otolaryngology is a fairly prevalent condition, and complications including infection and significant bleeding frequently happen during surgery, which pose a serious risk to the patients' mortality. Exploring the distinctive characteristics of postoperative nursing safety events in patients who have undergone otolaryngology surgery and comprehending the distinctive features of postoperative nursing safety events in otolaryngology surgery patients are of utmost importance. 52 incidences of postoperative safety nursing incidents were identified by this study's preoperative safety protection for 385 inpatients. According to this study, the main factors influencing postoperative care are confected lesions (95.0% C1: 9.365–21.038), the treatment period (95.0% CI: 7.147–20.275), during hospitalisation (95.0% CI: 8.918–24.237), antibiotic use (95.0% CI: 8.163-21.739), and hypertension (95.0% CI: 7.926-22.385). Using the association rule method to analyse and control the major risk.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.