Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.

Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores

Indexado en
  • Índice Copérnico
  • Google Académico
  • sherpa romeo
  • Abrir puerta J
  • Revista GenámicaBuscar
  • Claves Académicas
  • InvestigaciónBiblia
  • Infraestructura Nacional del Conocimiento de China (CNKI)
  • Acceso a la Investigación Global en Línea en Agricultura (AGORA)
  • Biblioteca de revistas electrónicas
  • Búsqueda de referencia
  • Universidad Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • Catálogo en línea SWB
  • Biblioteca Virtual de Biología (vifabio)
  • publones
  • Fundación de Ginebra para la educación y la investigación médicas
  • Pub Europeo
  • ICMJE
Comparte esta página

Abstracto

Engineered In Vitro Feed-Forward Networks

Anupama Natarajan1, Thomas B. DeMarse2, Peter Molnar3, and James J. Hickman1

Microelectrode arrays (MEAs) are a promising new method for high throughput neuronal assays. These arrays permit non-invasive, detailed optical and multichannel electrophysiological interrogation of functional neuronal networks for drug development or neurotoxicity assessment. There has also been an effort by a number of groups to develop in vitro analogues of in vivo brain circuitry or physiological systems to serve as well defined models of in vivo tissue. However, a key hurdle in these efforts has been the ability to define and constrain the directionality of  pathways within these systems. This issue is particularly relevant during the recreation of in vivo brain architectures that communicate through defined pathways, often with specific directionality. In this paper, we demonstrate a line/ gap topology that promotes the growth of axonal directionally between neurons that have been engineered into a living analogue of a feed-forward neural architecture. The effective connectivity of this architecture was estimated from neural activity measured by a multichannel microelectrode array and quantified using conditional Granger causality analysis. Plasticity was then induced to determine whether 1) LTP/LTD was supported in this novel architecture and 2) whether plasticity differed from random network controls. We show that this method promotes unidirectional feed-forward relative to opposing feedback pathways in spontaneously active networks. This study also represents the first attempt to use the Granger causality metric for the assessment of the activity of a biological neuronal network in which connectivity is highly defined.