ISSN: 2161-0681

Revista de patología clínica y experimental

Acceso abierto

Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.

Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores

Indexado en
  • Índice Copérnico
  • Google Académico
  • sherpa romeo
  • Abrir puerta J
  • Revista GenámicaBuscar
  • TOC de revistas
  • Directorio de publicaciones periódicas de Ulrich
  • Búsqueda de referencia
  • Universidad Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • publones
  • Fundación de Ginebra para la educación y la investigación médicas
  • Pub Europeo
  • ICMJE
Comparte esta página

Abstracto

Enhancing the Quality of Dental Radiographic Images: A Review on Panoramic and Periapical Radiograph Enhancement Techniques

Abdulbadea Altukroni, Omar Ezz El-Deen, Sadaf Jabeen, Sadaf Jabeen

Appropriate radiographic interpretation is critical for providing high-quality patient care. The radiograph’s wealth of data assists dentists in prescribing the best treatment option for their patients. Dental radiographs, particularly Ortho Pantomograms (OPGs) and periapical radiographs taken with low radiation doses, are frequently dark, low in contrast, and noisy. Image enhancement protocols are applied to radiographs to resolve these issues. However, selecting an appropriate technique is a tedious task, especially for the purpose of disease diagnosis. This study aims to survey standard image enhancement techniques for enhancing OPG and periapical radiographs. This study also investigates the potential image enhancement protocols conducted and what are the key factors involved in selecting a protocol for a certain type of dental disease. This review categorized the radiograph enhancement algorithm into three types: Contrast enhancement, frequency transforms and de noising filters, and deep learning. Extensive research has been conducted on the use of contrast enhancement and de noising filter algorithms for radiographs. The use of deep learning to enhance panoramic and periapical radiographs is still an emerging idea, and many potential results exist.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.