Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.

Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores

Abstracto

Environmental Toxicity Identification, Prediction, and Exploration Using Machine Learning: Problems and Perspectives

Mendeley Collins

Data-driven machine learning (ML), which has gained recent popularity in environmental toxicology, has distanced itself from hypothesis-driven research during the past few decades. The application of ML in environmental toxicology is still in its infancy, however, due to knowledge gaps, technical challenges with data quality, interpretability issues with high-dimensional/heterogeneous/small-sample data analysis, and a lack of a thorough understanding of environmental toxicology. We evaluate the most current advancements in the literature and highlight cutting-edge toxicological investigations utilising ML in light of the aforementioned issues (such as learning and predicting toxicity in complicated biosystems and multiple-factor environmental scenarios of long-term and large-scale pollution).

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.