Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.
Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores
Lu Wang, Wei Guo, Xiaodong Lee
Cervical cancer is a significant global health concern, necessitating the development of effective therapeutic strategies. However, the success of these strategies is often hindered by drug toxicity, which can lead to adverse effects and treatment discontinuation. Genetic variations among patients play a crucial role in their susceptibility to drug toxicity. In recent years, machine learning techniques have demonstrated remarkable potential in predicting drug responses based on genetic information. In this study, we present a novel approach to predict drug toxicity in cervical cancer patients using machine learning algorithms and genetic data. By leveraging comprehensive genetic profiles and drug toxicity information, we aim to enhance personalized treatment strategies and mitigate the occurrence of adverse drug reactions. This research holds promise in improving the safety and efficacy of cervical cancer treatments, ultimately contributing to better patient outcomes and quality of life.