ISSN: 2155-9872

Revista de técnicas analíticas y bioanalíticas

Acceso abierto

Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.

Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores

Indexado en
  • Índice de fuentes CAS (CASSI)
  • Índice Copérnico
  • Google Académico
  • sherpa romeo
  • Base de datos de revistas académicas
  • Abrir puerta J
  • Revista GenámicaBuscar
  • TOC de revistas
  • InvestigaciónBiblia
  • Infraestructura Nacional del Conocimiento de China (CNKI)
  • Directorio de publicaciones periódicas de Ulrich
  • Biblioteca de revistas electrónicas
  • Búsqueda de referencia
  • Directorio de indexación de revistas de investigación (DRJI)
  • Universidad Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • director académico
  • Catálogo en línea SWB
  • Biblioteca Virtual de Biología (vifabio)
  • publones
  • Pub Europeo
  • ICMJE
Comparte esta página

Abstracto

Investigation of MgAl as a Promising Catalyst for Water Splitting: A Materials Studio Study

Muhammad Zohaib Safdar

The electrolysis technique of water splitting has received a lot of interest as a potentially sustainable means of producing hydrogen. Improving the efficiency of water splitting systems relies heavily on the discovery of new catalysts that do not break the bank. In this work, we use the computational modeling program Materials Studio to explore the feasibility of MgAl as a catalyst for water splitting. The initial part of this research entails setting up the MgAl catalyst in Materials Studio using the right simulation methods. We investigate the electronic structure and catalytic characteristics of MgAl using several computational approaches, including density functional theory (DFT). To evaluate the catalyst’s efficiency in splitting water, we look at its electrical features, such as its band structure and density of states. The adsorption characteristics of MgAl towards water molecules and the consequent dissociation of water into hydrogen and oxygen are also explored. In order to comprehend the stability and kinetics of the water splitting process on the MgAl surface, the adsorption energies and reaction paths are computed. The goal of our extensive computational investigation is to shed light on the basic processes responsible for MgAl’s catalytic activity in water splitting events. Insights from this work will help rationally design more effective catalysts for water splitting and give useful direction for future experiments [2]. This study concludes with the results of a comprehensive computational analysis of the MgAl catalyst for water splitting performed in Materials Studio. We want to discover MgAl’s potential as a catalyst for water splitting applications by clarifying its electrical structure, adsorption characteristics, and reaction kinetics. The findings of this study will aid in the creation of sustainable hydrogen production systems, which in turn will help to progress renewable energy technology [3 ].

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.