Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.
Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores
Jian Zhu
Buried Channels are one system of conservation transfer for extensively used feasts similar as natural gas and hydrogen. The safety of these channels is of great significance because of the implicit leakage pitfalls posed by the ignitable gas and the special parcels of the hydrogen admixture. Estimating the leakage geste and quantifying the prolixity range outside the channel are important but grueling pretensions due to the hydrogen admixture and presence of soil. This study provides essential information about the prolixity geste and attention distribution of underground hydrogen and natural gas admixture leakages. Thus, a large- scale experimental system was developed to pretend high- pressure leaks of hydrogen admixture natural gas from small holes in three different directions from a channel buried in soil. The prolixity of hydrogen- unravel natural gas in soil was experimentally measured under different conditions, similar as different hydrogen admixture rates, release pressures, and leakage directions. The experimental results vindicated the connection of the gas leakage mass inflow model, with an error of6.85. When a larger proportion of a single element was present in the hydrogen- unravel natural gas, the leakage pressure showed a lesser prolixity range. In addition, the prolixity range of hydrogen- unravel natural gas in the leakage direction was larger at 3o'clock than that at 12o'clock. The hydrogen mix carried methane and diffused, which docked the methane achromatism time. Also, a quantitative relationship between the attention of hydrogen- unravel natural gas and the prolixity distance over which the hydrogen- unravel natural gas reached the lower limit of the explosion was attained by quantitative analysis of the experimental data.