Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.
Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores
Yin-Xiu Ding, Li-Chun Wei, Yong-Hong Liu, Li Duan, Xi-Ying Jiao, Yi Xia and Liang-Wei Chen
Parkinson’s disease (PD) is one severe debilitating neurological disease that results from massive and progressive degenerative loss of dopaminergic neurons in the substantial nigra, and new cell therapy appeal hopeful functional recovery of injured dopaminergic neuronal system and cure of PD. We are interested in therapeutic potential of neural stem cell in transplantation treatment against PD, the midbrain-derived neural stem cells (mNSCs) were studied by in vitro culture in focusing on their proliferative, differentiation and neurotrophic properties and in comparing with hippocampus-derived NSCs (hNSCs). The results revealed that: 1) The mNSCs showed lower BrdU incorporation ratio or lower proliferative rate than that of hippocampus-derived ones but had higher cell survival capacity in serum-free culture; 2) The mNSCs exhibited similar Tuj-1+ immature neuronal differentiation, but higher Nurr1+ and tyrosine hydroxylase (TH)+ cell fate commitment in comparison with that of hNSCs in at d1-d7 differentiation culture; 3) The mNSCs expressed several neurotrophic factors, i.e. brainderived neurotrophic factor(BDNF), glial-derived neurotrophic factor (GDNF), cerebral dopamine neurotrophic factor (CDNF) and DJ-1, that actively function in dopaminergic neuronal maintenance or neuroprotection, with their slightly different or similar levels in comparison to that of hNSCs. Taken together, this study has provided new evidence that mNSCs show the unique cell proliferation, cell survival, dopaminergic neuronal differentiation and neurotrophic properties, suggesting that midbrain-derived NSCs may present an ideal cell source or reliable tissue candidate for therapeutic cell transplantation or neuroprotective treatment of PD in human beings.