Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.
Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores
Gary Matthew Hawkins, Debashis Ghose, Jordan Russel and Joy Doran-Peterson
Obtaining the highest possible yields from a batch fermentation process is desirable for a cellulosic ethanol facility, as this leads to greater profitability by increasing distillation efficiency and reducing costs. One way to increase yields is by increasing the percentage of solids fermented in a batch process which leads to increased fermentable sugars available and thus increased theoretical maximum yields. One factor limiting the solids loading is that during biomass pretreatment a number of inhibitory compounds are released. These confound the fermentation process in a variety of ways, and as the solids concentration increases so do the concentrations of these inhibitors. There for ea biocatalytic strain that is able to ferment high concentrations of pretreated biomass and withstand the inhibitors present in the fermentation media is desirable. Pine wood has proven to be a particularly difficult biomass type from which to obtain high ethanol titers when fermenting concentrations of solids much greater than 10% dry weight. We previously described a strain of Saccharomyces cerevisiae, AJP50, which is able to ferment high concentrations (17.5% dry wt/v) of sulfur dioxide steam exploded pine wood. Present research details the performance of four isolates of AJP50 and their ability to produce ethanol from pretreated pine. We report ethanol yields of over 50 g/l (91% of maximum theoretical yield) from 22.5% dry wt/v of pine fermented using a simultaneous saccharification and fermentation process with strain GHP4 as the biocatalyst.