Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.

Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores

Indexado en
  • Índice de fuentes CAS (CASSI)
  • Índice Copérnico
  • Google Académico
  • sherpa romeo
  • Abrir puerta J
  • Revista GenámicaBuscar
  • Claves Académicas
  • TOC de revistas
  • InvestigaciónBiblia
  • Infraestructura Nacional del Conocimiento de China (CNKI)
  • Directorio de publicaciones periódicas de Ulrich
  • Búsqueda de referencia
  • Universidad Hamdard
  • EBSCO AZ
  • OCLC-WorldCat
  • Catálogo en línea SWB
  • publones
  • Fundación de Ginebra para la educación y la investigación médicas
  • Pub Europeo
  • ICMJE
Comparte esta página

Abstracto

Quantitative Decision Tools for the Management and Analysis of the Risk from Terrorist Attacks

Edward Melnick

A natural epidemic is a disease that suddenly affects many individuals in a short time period, spreading from person to person in a locality where thedisease is not usually prevalent. The sudden outbreak of an epidemic is usually modeled as a random variable because it cannot be anticipated. Epidemics introduced by bioterrorists are planned events by intelligent adversaries, who might also introduce other terrorists’ activities that dependon the responses of the defenders. Since these events are not random, models maybe helpful for anticipating terrorist attacks. Since defendingagainst such attacks does not fit into the classical modeling paradigmbecause there is a scarcity of data, the defender must respond quickly, the attacker can also adapt new strategies in response to the actions of thedefender, new modeling strategies are required to improve the strategies of the defender. In this article, a Stackelberg model combined with fault trees is proposed for determining sequential optimal defense strategies for thedefender by identifying minimal cut sets of events that would most likely lead to a successful terrorist attack. Further, if the model can be formulated as a sequence of Markovian state changes based on default trees, a dynamic programming problem with the Bellman equation reduces the solution from evaluating a complex model to evaluating a sequence of simple problems

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado.