Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.
Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores
William Shinde
Numerous self-organizing systems can be found in nature that autonomously adapt to shifting circumstances without impairing the system's objectives. In order to conduct an energy-effective region sampling, we suggest a selforganizing sensor network that is modelled after actual systems. Using local data processing, mobile nodes in our network carry out certain rules. These principles give the nodes the ability to split the sampling duty so that they can self-organize to use less power overall and sample phenomena more accurately. The digital hormone-based model,which contains these regulations, offers a theoretical framework for analysing this group of systems. On cricket mote simulations, this model has been put into practise. Compared to a traditional model with fixed rate sampling, our findings show that the model is more efficient.
In transportation optimization, personnel scheduling, network routing, and other areas, the constrained shortest path (CSP) problem is frequently employed. As an NP-hard problem, it is still a matter of debate. The adaptive amoeba algorithm's fundamental mechanism is the foundation of the novel approach we provide in this paper. Two sections make up the suggested procedure. To resolve the shortest path problem in directed networks in the first section, we use the original amoeba approach. The Physarum algorithm and a rule with bio-inspired design.