Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.
Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores
Nadine Griesche, Verena Pesch, Rohit Nalavade, Stephanie Weber, Ireen König, Manuel Schölling, Christoph Möhl and Sybille KrauB
Traditionally, studies on protein translation rely on systems, in which cells have been lysed prior determination of levels of the protein of interest. However, these assays do not reflect the protein synthesis in living cells in real time, but analyze protein levels after a given incubation time, leading to limitations in results based on experimental parameters. To overcome this problem, we have previously established a Fluorescence recovery after photobleaching (FRAP)-based technique to monitor protein translation in living cells. For this, the protein of interest fused to green fluorescent protein (GFP) is expressed in cell lines. After bleaching the entire cell, the fluorescent signal of the protein of interest is lost, allowing to capture the signal recovery of newly translated GFPtagged protein over time. Here we present two improved versions of this technique using different fluorescent dyes: tFRAP (translational FRAP). For the first improved version of tFRAP we have inserted a second fluorescent dye, red fluorescent protein (RFP), into the same expression vector that drives expression of the protein of interest fused to GFP driven by a second promoter. For the second improved version of tFRAP we have fused our protein of interest to a photo-switchable dye, Dendra2. Both improved versions allow to correct the fluorescence signal intensity of the protein of interest for different transfection rates of individual cells. These two advanced techniques are new powerful tools for quantifying translation rates in living cells and will be useful in future studies on mRNA translation.