Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.
Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores
Joshua Wiedermann
Pharmacological research aimed at revolutionizing drug delivery methods through the utilization of nanotechnology. This emerging field holds immense potential for enhancing therapeutic outcomes, minimizing side effects, and optimizing treatment regimens. Nanotechnology involves manipulating materials at the nanoscale, typically between 1 and 100 nanometers, to create innovative drug delivery systems. One significant area of focus within this field is the development of nanocarriers, such as liposomes, polymeric nanoparticles, and Dendrimers, which can encapsulate drugs and transport them to target sites with enhanced precision. These Nano carriers offer several advantages, including increased drug stability, prolonged circulation time, and improved bioavailability. Furthermore, their ability to passively or actively target specific tissues or cells can significantly enhance drug accumulation at the desired site, while minimizing exposure to healthy tissues.
Moreover, researchers are exploring the integration of stimuli-responsive nanomaterials that can release drugs in response to specific triggers, such as changes in pH, temperature, or the presence of certain enzymes. This "smart" drug delivery approach holds great promise for achieving controlled and on-demand drug release, thereby improving therapeutic efficacy and reducing the frequency of administration. Additionally, nanotechnology-based drug delivery systems are being designed to overcome biological barriers, such as the blood-brain barrier, which restricts the entry of therapeutic agents into the central nervous system. By leveraging nanoscale carriers, researchers are exploring strategies to enhance drug penetration and deliver treatments for neurological disorders more effectively.