Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.
Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores
Arif M, Waheed R, Muqaddasi QH, Ahmed Z, Khalid M, Naveed SA, Shahzad M and Xu J
Identification of alleles for a particular variety through Bulk Segregant Analysis (BSA) is a valuable technique that probes differences specifically in distinguishing traits. Our study was an attempt to develop variety specific marker which differentiate aromatic rice cultivars from non-aromatic. Bulk Segregant Analysis (BSA) approach with RAPD and ISSR assay was undertaken to trace the variety specific alleles among 2 group of popular Pakistani Basmati and non-Basmati rice genotypes to check adulteration by rice exporters. Out of 160 RAPDs and 30 ISSR used in BSA, 29 RAPD and 18 ISSR revealed consistent polymorphisms and were used to assort the advanced disparities amongst 10 varieties. Overall 262 of 359 random amplified alleles and 116 of 151 inter simple sequence alleles were found polymorphic. The number of alleles generated from RAPD and ISSR marker ranged from 5 to 19 and 3-18 respectively. Pair-wise genetic similarity among the varieties with jaccard coefficients was 0.85 for RAPDs and 0.79 for ISSRs. UPGMA dendrogram based on cluster analysis of individual and combine genetic similarity co-efficient resolved 10 rice cultivars into 2 major groups, Basmati and Non-basmati. Moreover, a total of 3 variety specific alleles of 650, 800, 1075 bp were amplified by random primers OPN-05 and OPE-09. While ISSR generated five (UBC-814, UBC-811, UBC-808, UBC-808a and UBC-82) rare alleles for specific genotypes with band sizes of 1500, 1400, 250, 950 and 720 bp respectively. Direct sequencing of rare allelic ampliï¬ed bands in Sequence Characterized Ampliï¬ed Regions (SCARs) and sequence tagged sites (STS) might behave useful for recreating phylogenic trees with aim of preserving the integrity of Basmati rice.