Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.
Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores
Zhonke Surj
Biofortification of crops with iron, like wheat, is a good way to deal with iron deficiency, which causes hidden hunger. We now know more about how iron accumulates in wheat grains thanks to a number of recent studies that examined the genetics that control iron concentrations in wheat grains. However, plant genetics make it difficult to breed iron-rich wheat cultivars successfully. In addition to the widespread recognition of microbes associated with wheat, there is evidence that microbes influence plant genetics and the iron concentration in grain. The rhizosphere (rhizobacteria) or the inner wheat tissues (endophytes) were home to the microbes that make up the plant microbiome. They have complex hereditary qualities and impact iron take-up, remobilization, aggregation, and bioavailability, consequently either straightforwardly or by implication adding to grain iron biofortification in wheat. While it has been possible to exceed the targeted iron biofortification requirement of 59 g Fe/g cereal grain in rice (60-140 g), the majority of wheat lines only reach 20-40 g Fe/g wheat grain. As we would see it, consolidating both plant and microbial hereditary qualities for fruitful iron biofortification in wheat is fundamental. An effective and feasible method for the biofortification of wheat with iron could involve the application of microbes, particularly engineered endophytes that are integrated with plant genes that control iron accumulation.