Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.
Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores
Sandip Sen, N.A.Farooqui , T.S.Easwari, Bishwabara Roy
Progress in medicinal chemistry and in drug design depends on our ability to understand the interactions of drugs with their biological targets. Classical QSAR studies describe biological activity in terms of physicochemical properties of substituents in certain positions of the drug molecules. The detailed discussion of the present state of the art should enable scientists to further develop and improve these powerful new tools. Comparative Molecular Field Analysis (CoMFA) is a mainstream and down-toearth 3D QSAR technique in the coverage of drug discovery and development. Even though CoMFA is remarkable for high predictive capacity, the intrinsic data-dependent characteristic still makes this methodology certainly be handicapped by noise. It's well known that the default settings in CoMFA can bring about predictive QSAR models, in the meanwhile optimized parameters was proven to provide more predictive results. Accordingly, so far numerous endeavors have been accomplished to ameliorate the CoMFA model’s robustness and predictive accuracy by considering various factors, including molecular conformation and alignment, field descriptors and grid spacing. In the present article we are going to discuss the basic approaches of CoMFA in drug design.