Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.

Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores

Abstracto

Effects of the Amount of Poly (Vinylpyrrolidone) on the Characteristics of Silver Nanoparticles Produced Using a Modified Thermal Treatment Method

Relisa Fibshah

By using a modified thermal treatment process with successive flows of oxygen and nitrogen, very small and pure silver nanoparticles were produced. By using various methods, the structural and optical characteristics of the calcined silver nanoparticles at 600 °C with various Poly (vinylpyrrolidone) concentrations ranging from 2% to 4% were investigated. At a specific concentration of Poly (vinylpyrrolidone), the formation of pure Ag nanoparticles was seen using Fourier transform infrared spectroscopy. The X-ray powder diffraction spectra show that for all concentrations of poly (vinylpyrrolidone), the amorphous sample at 30 °C changed into cubic crystalline nanostructures at the calcination temperatures [1]. By increasing the quantities of Poly (vinylpyrrolidone), from 4.61 nm at 2% to 2.49 nm at 4%, spherical silver nanoparticles with smaller average particle sizes were produced, as seen in transmission electron microscopy images (vinylpyrrolidone). The conduction band of Ag nanoparticles increased with increasing Poly (vinylpyrrolidone) concentrations, from 2.83 eV at 2% Poly (vinylpyrrolidone) to 2.94 eV at 4% Poly(vinylpyrrolidone), due to decreasing particle size. The optical properties were investigated using a UV-vis absorption spectrophotometer. Due to the smaller particle size, which corresponded to fewer atoms making up the metal nanoparticles, there was less attraction between conduction electrons and metal ions.