Nuestro grupo organiza más de 3000 Series de conferencias Eventos cada año en EE. UU., Europa y América. Asia con el apoyo de 1.000 sociedades científicas más y publica más de 700 Acceso abierto Revistas que contienen más de 50.000 personalidades eminentes, científicos de renombre como miembros del consejo editorial.
Revistas de acceso abierto que ganan más lectores y citas
700 revistas y 15 000 000 de lectores Cada revista obtiene más de 25 000 lectores
Takayoshi Mamiya, Keiko Morikawa, Mitsuo Kise
We previously reported that the continuous feeding of mice with pellets of pregerminated brown rice (PGBR; Hatsuga genmai in Japanese) enhances their spatial learning. Here, we show the possible relationships of the enhancement of learning and memory with the glutamatergic system in the brain of PGBR-pellet-fed mice. The enhancement of learning and memory in the novel object recognition and Y-maze tests after 28-day-feeding of PGBR pellets was inhibited by dizocilpine (10 μg/kg s.c.), an N-methyl-D-aspartate (NMDA) receptor antagonist, whereas the extracellular glutamate level and the glutamate content were not affected in the frontal cortex and hippocampus. In the frontal cortex of mice fed PGBR pellets, the phosphorylation of calcium calmodulin kinase IIα (CaMKIIα), one of the important events after NMDA receptor activation, was facilitated compared with that of mice fed control pellets. This facilitation was inhibited by dizocilpine (10 μg/kg s.c.), whereas the phosphorylation of extracellular signal-regulated protein kinases (ERKs), another index of memory formation was not affected by PGBR pellets. On the other hand, in the hippocampus, there was no significant difference in the phosphorylation of CaMKIIα and ERKs between the control and PGBR pellets-fed mice. Taken together, these results suggest that PGBR enhances the NMDA receptor/CaMKIIα signaling in the frontal cortex, leading to enhanced learning and memory in mice.